Клонирование животных и растений

5 самых часто клонируемых животных

Наверняка вы уже знакомы с Долли, овечкой, достигшей почти звездного статуса в качестве первого млекопитающего, которого удалось успешно клонировать при помощи клеток взрослого животного. Хотя Долли была одной из немногих клонированных животных, которым удалось привлечь к себе внимание, она, все же, не одинока. Первый в мире клон – головастик – был создан в 1952 году. С тех пор десятки различных видов животных были клонированы, начиная от обычной коровы и заканчивая дикими быками.

Клонирование животных прошло серьезный путь развития с тех пор, как первый клонированный головастик появился на свет более 50 лет назад. Американская организация по надзору за продуктами питания и лекарственными препаратами еще в 2008 году выпустила декларацию, в которой говорилось о том, что пищевые продукты, полученные от клонированных коров, свиней и коз, являются безопасными для человека. Таким образом, интерес к этому вопросу вырос еще сильнее.

У клонирования есть дополнительные преимущества помимо тех, что оно помогает фермерам “выращивать первоклассные гамбургеры и бекон”. Другие потенциальные области применения включают в себя сохранение видов, биомедицинские исследования, производство лекарственных препаратов и т.д.

Кажется, что узнать точное количество клонированных животных, существующих на земле также трудно, как и клонировать их. Не существует официальной регистрации клонов, а научно-исследовательские лаборатории не обязаны докладывать о каждой клонированной мыши или головастике. Таким образом, вооружившись некоторыми знаниями о клонировании животных и наиболее распространенных областях применения самого клонирования, вполне реально сузить количество самых часто клонируемых животных в мире.

Клонированные домашние животные

В 2005 году южнокорейские ученые объявили, что создают первый клон собаки – афганской борзой по кличке Снупи. Несколькими годами ранее, в конце 2001 года мир увидел первый клонированный котенок. С тех пор, по меньшей мере, около 40 собак и неизвестное количество кошек было клонировано.

В июле 2008 года международный компания BioArts провела конкурс, победитель которого получил возможность клонировать своего домашнего любимца. Программа называлась “Возвращение лучшего друга” и включала в себя полностью оплачиваемую компанией процедуру клонирования. Победу в конкурсе одержала собака, которая принимала активное участие в спасательной операции 11 сентября и очень достойно себя проявила, чем и заслужила звание “самого достойного для клонирования животного”.

Сотни людей ежегодно готовы платить около 1 тысячи долларов для того, чтобы сохранить генетический материал их кошки или собаки для последующего клонирования. Несмотря на высокий спрос коммерчески клонируемых домашних животных BioArts на своем сайте отмечает, что “Возвращение лучшего друга” – это ограниченный сервис и что программа может возобновиться, а может и нет.

Однако, находящаяся в Сеуле компания RNL Bio недавно открыла свои двери для массового потока людей после того, как в августе 2008 года родились пять клонированных щенков, и она заявила о себе, как о «первой успешной в коммерческом клонировании собак» компании. Команда специалистов, работающих в компании, уже клонировала более 20 собак и планирует клонировать в год до 300 животных. Поэтому, если у вас есть лишние 150000 долларов, а также любимый мопс, с которым вы не хотите расставаться, смело отправляйтесь в Южную Корею.

Клонированные козы и овцы

Для большинства людей, вероятно, более захватывающим является процесс наблюдения за клонированной овцой, нежели за неуклюжим скотом на ферме. Но для ученых и селекционеров, клонированные овцы и козы – это то, на что возлагаются большие надежды.

Овцы, к примеру, могут быть генетически модифицированными для производства лекарственных препаратов, которые окажутся полезными для человека. Одним из примеров является Полли, клонированный ягненок, который был специально создан для производства молока, содержащего особый протеин, который в недостаточном количестве присутствует у больных гемофилией. Теоретически, такие овцы, как Полли, могут массово производиться для того, чтобы получать необходимое количество лекарственных препаратов.

Шерсть овец – это еще одно преимущество клонирования. Селекционеры вручную возятся со своими стадами в течение многих лет для того, чтобы получить овец, шерсти на которых будет очень много, причем генетика позволяет им «увековечить» тех особей, которые приносят наибольшее количество шерсти.

Кроме того, некоторые козы клонируются для того, чтобы производить более высокого качества молоко и мясную продукцию.

Стоит отметить, что клонированные свиньи используются не только для того, чтобы получать от них мясо, они также популярны из-за пригодности их органов для трансплантации человеку.

Пересадка клеток, тканей или органов от одного вида другому известна как ксенотрансплантация и рассматривается как потенциальное решение вопроса постоянной нехватки органов и клеток для спасательных трансплантатов. При особой “генетической настройке” свиней, представители биофармацевтической компании PPL Therapeutics говорят о том, что свинья сможет получить такой набор ДНК, под влиянием которого разовьются некоторые органы и клетки, которые смогут быть успешно использованы на людях. Эти генетически модифицированные свиньи могут быть массово клонированы для того, чтобы производить, к примеру, продуцирующие инсулин клетки для лечения диабета первого типа, а также для лечения таких важных органов, как сердце и почки.

Согласно данным европейской организации по безопасности пищевых продуктов, которая недавно проводила исследование клонированных животных и их потомства, на данный момент в мире существует не менее 500 клонированных свиней. И, как и клонированные козы и овцы, свиньи также “получили” одобрение со стороны американской ассоциации по продуктам питания и лекарственным препаратам, поэтому вполне вероятно, что поголовье клонированных свиней будет только расти.

Не так давно коровы уже были обвинены в том, что они “заполняют” атмосферу чрезмерным количеством метана, однако, коровы в ближайшее время никуда не денутся, особенно теперь, когда фермеры могут клонировать лучшие образцы скота для создания первоклассного стада.

Клонирование – это наиболее простой путь для фермера делать то, что он всегда делал и улучшить свои доходы путем выборочного разведения этих животных с желаемыми характеристиками. Хотите стейк из мягкого мяса? Клонируйте Бутча. Хотите нежнейшего молока, обогащенного полезными веществами? Проделайте то же самое с Бесси.

Если мысль о потреблении продуктов из клонированных животных заставляет вас морщиться, то не отчаивайтесь: вам наверняка, как и впрочем вашему организму, понравится то, что вы попробуете. Поскольку стоимость клонирования одной коровы обойдется примерно в 10000-20000 долларов, оно не будет массовым.

В настоящее время две американские компании предлагают услуги по клонированию скота. Одна из них производит около 150 клонированных коров в год, другая около 250. Европейское ведомство по безопасности пищевых продуктов говорит о том, что в мире приблизительно насчитывается 4000 клонированных коров.

Эти все более популярные лабораторные животные стали пользоваться еще большим спросом после появления репродуктивного клонирования. Первая клонированная мышь Кумулина родилась в июле 1998 года. При этом, она была не одна: в то время, как создателям Долли потребовалось 277 попыток для того, чтобы родилась овца, Кумулина стала первой из 10 своих идентичных братьев и сестер. В течение пяти месяцев ее создатели изготовили более 60 клонов мыши.

С тех пор, как мыши стали самыми желательными животными для биомедицинских исследований, возможность иметь бесконечное количество генетически идентичных грызунов вызвала настоящий переполох в научных кругах. С появлением Кумулины, процесс клонирования мышей начал набирать обороты. В 2007 году во время одного из исследований была обнаружена техника клонирования мышей, которая являлась в пять раз более эффективной, чем предыдущая.

Мыши, наряду с крысами и птицами, используются в 95 процентах случаях проведения исследований. Это вероятно приводит к появлению тысяч маленьких клонированных мышей. Несмотря на то, что ученые не должны сообщать о количестве клонированных животных, используемом ими, они наверняка используют технологии клонирования в своих исследованиях, поэтому число клонированных животных может быть очень большим.

Клонирование. Просто о сложном

  • 1716
  • 0,8
  • 1
  • 3
Автор
Редакторы

Статья на конкурс «био/мол/текст»: 27 февраля 1997 года журнал Nature опубликовал статью эмбриолога и генетика Йэна Уилмата и его коллег об успешном клонировании овечки Долли. С этого момента не прекращались споры о целесообразности и этичности опытов по клонированию многоклеточных организмов. В том числе обсуждались вопросы клонирования человека.

Конкурс «био/мол/текст»-2019

Эта работа опубликована в номинации «Школьная» конкурса «био/мол/текст»-2019.

Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Такие слова, как «клонирование» и «клон», могут вызывать различные ассоциации, начиная от фантастических образов одинаковых людей из известного телесериала и, заканчивая историей появления на свет овечки Долли [1]. Но что же такое клон на самом деле?

Клон — группа генетически идентичных организмов или клеток. Если гены идентичны, то, по сути, клоны — одинаковые существа. «Под ударом» оказывается уникальность отдельного многоклеточного организма, в том числе, возможно, и человека [2].

Сегодня существует ряд этических преград для дальнейшего развития клонирования, тем более в отношении человека. Некоторые мировые религии считают клонирование человека недопустимым. В некоторых странах клонирование запрещено вообще. В части стран запрещено клонирование, при котором воспроизводится целый многоклеточный организм [3].

И хотя предметом споров является клонирование многоклеточных организмов, необходимо понять значение термина «клонирование» в широком смысле слова.

Клонирование в биологии — это появление естественным или искусственным путем нескольких генетически идентичных живых организмов. Термин в том же смысле нередко применяют по отношению к одноклеточным организмам и клеткам многоклеточных организмов.

Термин «клонирование» применим как к растениям, так и к животным. Все идентичные организмы, созданные путем клонирования, называют клонами.

Термин «клонирование» можно использовать в двух значениях.

Естественное клонирование

В действительности, клонирование свойственно и растительному, и животному мирам. Например, вегетативное размножение растений, деление бактерий, клональное размножение ящериц. В том числе рождение близнецов у людей — тоже пример естественного клонирования.

Искусственное клонирование

Это группа методов, при которых целенаправленно создаются клоны молекул, клеток, многоклеточных организмов.

Бактериальное клонирование — это целенаправленное создание и выращивание бактериальных клонов для биотехнологий.

Молекулярное клонирование, при котором получают клоны фрагмента ДНК, а затем вставляют в необходимые клетки.

Искусственное клонирование многоклеточных организмов. При этом виде клонирования можно создать клоны клеток, тканей, целого органа или даже организма. Именно искусственное клонирование многоклеточных организмов является предметом споров и разногласий научного сообщества, религии, и предметом этой статьи.

Читайте также:  Влияние удобрений на рост и развитие растений

Немного о биологии размножения многоклеточных организмов

Совокупность наследственного материала клетки называется геномом. Многоклеточные организмы — эукариоты. Одной из особенностей эукариотических клеток является то, что наследственный материал находится в ядре клетки в виде хромосом, а также в виде кольцевидной ДНК в митохондриях.

Хромосома — нитевидная структура, состоящая из ДНК и белков. Именно ДНК несет генетическую информацию. Например, в ядре клеток человека содержится 23 пары хромосом (то есть всего 46) [4]. В половых клетках человека содержится половина — 23 хромосомы. При соединении двух половых клеток — маминой и папиной — получается клетка зигота с 46-ю хромосомами (рис. 1). Зигота дает начало всем будущем клеткам и тканям организма. Таким образом, в естественных условиях все клетки многоклеточного организма несут генетическую информацию от своих отца (мужской гаметы) и матери (женской гаметы) [5]. Клетки, содержащие 23 хромосомы, называются гаплоидными, а содержащие все 46 хромосом — диплоидными. В организме млекопитающих все клетки, кроме половых, являются диплоидными соматическими [4], [6].

Рисунок 1. Результат оплодотворения — зигота человека

У разных млекопитающих — разное количество хромосом (см. табл.).

Название млекопитающегоКоличество хромосом диплоидного набораКоличество хромосом гаплоидного набора
Человек4623
Шимпанзе4824
Овца5427

При клонировании нет процесса оплодотворения (слияния) двух половых клеток. У этого многоклеточного организма (клона) не будет отца и матери в общепринятом смысле слова. У него будет один генетический «родитель». Тот, чье ядро использовалось для клонирования.

Немного истории клонирования

У клонирования сложный и тернистый путь.

Можно сказать, что одной из основ клонирования является клеточная теория, разработанная Теодором Шванном в 1839 году. В 1866 году вышла статья Грегора Менделя по селекции растений, в которой впервые говорится о «единице информации». Таким образом были заложены основы генетики. В 1886 году профессор-зоолог Московского университета А.А. Тихомиров обнаружил возможность развития шелковичного червя из неоплодотворенного яйца. В 1892 году Г. Дриш впервые изучил, что происходит с генетическим материалом клетки во время ее деления, на бластомерах морского ежа. Группой ученых также было доказано, что генетическая информация содержится в ядре. В 1902 году два независимых исследователя, У. Саттон и Т. Бовери, описали хромосомы и объявили, что «единицы информации» Менделя находятся в хромосомах. В 1909 году Вильгельм Йоханнсен дал название этим «единицам информации». С этого момента они стали называться генами. В том же 1909 году советский ученый-гистолог А.А. Максимов впервые использовал термин «стволовая клетка» для клетки, которая дает начало другим клеткам. В 1910 году Томас Хант Морган начал определять расположение различных генов в хромосомах мушек. Можно смело сказать, что указанные исследования внесли фундаментальный вклад в развитие всех наук о живом, а также заложили основы клонирования.

В 40-х годах прошлого века советский ученый-эмбриолог Г.В. Лопашов проводил эксперименты по переносу клеточных ядер в энуклеированную (лишенную ядра) яйцеклетку земноводных. Аналогичные работы с земноводными проводили эмбриологи Т. Кинг и Р. Бриггс в США. В 50-х годах английский эмбриолог Д. Гордон пересаживал ядра соматических клеток в яйцеклетки лягушки. В 1963 году Тонг Дизхоу получал клоны карпа. В 1975 году были опубликованы результаты успешной работы Д. Бромхола по клонирования кроликов. В 1983 году Л.А. Слепцова и ее коллеги клонировали костистых рыб (вьюнов). В 80-х годах прошлого столетия ученый С. Вилладсен провел серию успешных опытов по клонированию сельскохозяйственных животных путем переноса в яйцеклетку ядра зародыша. В 1997 году Йэн Уилмат и Кейт Кэмпбелл из Шотландии объявили о прорыве: проведено клонирование овцы с использованием соматической, не зародышевой, клетки [1], [7]!

Долли — самка овцы, первое млекопитающее, которое смогли клонировать из зрелой соматической клетки путем замещения ядра. Технология получения этого клона была следующей.

При клонировании Долли использовали клетки двух «родителей» и «суррогатную мать» — еще одну самку овцы. От одного «родителя» брали яйцеклетку, из которой удаляли ядро. От второго брали ядро, извлеченное из соматической клетки (вымени). Внутрь безъядерной яйцеклетки первой овцы вводили ядро зрелой соматической клетки другой овцы. Затем физическим (электрическим) методом провоцировали процесс деления и образования эмбриона (рис. 2). После чего эмбрион переносили в матку «суррогатной матери» — овцы.

Рисунок 2. Схема клонирования овцы Долли

Потребовалось очень много попыток клонирования, прежде чем на свет появилась Долли. Ученые — биологи из Шотландии Йэн Уилмат и Кейт Кемпбелл — по праву могут считать себя «Родителями» Долли [1]. В 2003 году Долли пришлось усыпить из-за заболевания легких и артрита. После этого ее забальзамированное тело было выставлено в Королевском музее Шотландии.

В вопросе о клонировании остается много сложного и спорного. Необходимо соблюсти все этические нормы по отношению к живому [8]. Но исследования наверняка будут продолжаться. А мы должны понимать, что за словом «клонирование» скрываются не научно-фантастические рассказы, а реальная технология, которая может принести и практическую пользу.

Например, клонирование может помочь получить животных и растения с необходимыми параметрами, такими как плодовитость, устойчивость к болезням. Опыты с клонированием могут помочь в лечении болезней. Очень интересной является перспектива использования клонирования для восстановления популяции вымерших или вымирающих видов. Отдельного внимания заслуживают опыты терапевтического клонирования — получение культуры стволовых клеток для разработки новых методов терапии тяжелых заболеваний, например, онкологических [7].

Клонирование животных.

Напомним, что клонирование в биологии – метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Эти копии должны обладать идентичной наследственной информацией, т.е. нести идентичный набор генов.

Однако сейчас термин «клонирование» обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

Наибольшее интерес представляет клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Создавая особые условия и вмешиваясь в структуру ядра клетки специалисты заставляют развиваться её в нужную ткань или даже в целый заранее намеченный организм. Причём открыты не только методы воспроизведения того организма, из которого клетка была взята, но и другого организма — того, от которого был взят только генетический материал. Появилась принципиальная возможность воспроизведения даже умершего организма. И даже тогда, когда от него остались минимальные части — лишь бы из них можно было выделить генетический материал.

Тест на знание английского языка Проверь свой уровень за 10 минут, и получи бесплатные рекомендации по 4 пунктам:

    Аудирование Грамматика Речь Письмо

Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы.

В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы (рис.6).

Рис.1. Получение овечки Долли

Однако отметим, что успех сопутствовал лишь в одном из 236 опытов (!).

В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова).

Узнай стоимость написания работы Получите ответ в течении 5 минут . Скидка на первый заказ 100 рублей!

Дальнейшие эксперименты доказали, что в некоторых случаях ядра соматических (не зародышевых) клеток способны обеспечить нормальное развитие млекопитающих (что было показано на мышах).

Однако получение клона еще не означает получения точной копии клонированного животного. Например, в случае использования приемных матерей при клонировании млекопитающих невозможно обеспечить одинаковые условия, а значит трудно говорить об абсолютной точности клонирования исходной особи. На сегодняшний день ясно, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки: одни гены активно работают, другие «молчат». И чем организм более специализирован, чем выше ступенька эволюционной лестницы, на которой он стоит, тем эти изменения глубже и труднее обратимы.

Недавно было показано, что в соматических клетках в ходе их развития хромосомы последовательно укорачиваются на своих концах, а в зародышевых клетках специальный белок – теломераза достраивает, восстанавливает их.

Поэтому естественен вопрос, способны ли ядра соматических клеток полностью и эквивалентно заменить ядра зародышевых клеток в их функции обеспечения нормального развития зародыша.

Различают полное и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном — организм воссоздаётся — соответственно — не полностью. Например, лишь те или иные его ткани. Одно из перспективных применений клонирования тканей — клеточная терапия в медицине. Такие клетки могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое репродуктивное и терапевтическое клонирование.

Наверное, можно говорить, что в принципе техническая задача получения клонированных животных решена, однако насколько точно эти животные копируют прототип – этот вопрос остается открытым. И оправдают ли результаты работ по получению подобных клонов те затраты, которые они потребуют?

Мы с вами смогли разобраться еще в одной непростой теме, и заслуженная награда показана на рисунке.

КЛОНИРОВАНИЕ

КЛОНИРОВАНИЕ, в биологии – метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин «клонирование» обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.

Говоря о клонировании, происходящем в природе или в лаборатории, необходимо представлять себе, что вся генетическая, т.е. наследственная, информация, необходимая для роста, развития, обмена веществ и размножения организмов, передается от родителей потомству в форме дезоксирибонуклеиновой кислоты (ДНК).
См. также НАСЛЕДСТВЕННОСТЬ; НУКЛЕИНОВЫЕ КИСЛОТЫ.

ДНК упакована в хромосомах, которых в клетке бывает от одной у некоторых одноклеточных до нескольких десятков у высших растений и животных. Генетического материала, находящегося всего в одной хромосоме крошечного одноклеточного существа вроде амебы, достаточно для осуществления всех его жизненных функций. Однако сложно устроенному животному для этого необходимо примерно 100 000 различных генов.

Прокариоты.

Прокариоты – это самые простые по строению одноклеточные организмы типа бактерий, в клетках которых нет оформленного ядра и многих органелл, свойственных клеткам эукариотов, т.е. эволюционно более продвинутых организмов. Обычно прокариоты размножаются бесполым путем, а именно простым делением клетки надвое. В результате они образуют клоны.
См. также КЛЕТКА; РАЗМНОЖЕНИЕ.

Эукариоты и многоклеточные животные.

Эукариоты характеризуются тем, что их клетки обладают многочисленными органеллами и ядром, в котором заключены хромосомы, т.е. ДНК. Некоторые из этих организмов – одноклеточные, но в большинстве случаев это многоклеточные формы, состоящие из многих различных по структуре и функциям эукариотных клеток. Некоторые простейшие, например амебы и парамеции, способны быстро размножаться путем деления надвое.

У многоклеточных животных произошла специализация клеток и сформировались половые клетки (гаметы), предназначенные для полового размножения. У низкоорганизованных многоклеточных встречается как половое, так и бесполое размножение. С усложнением и увеличением подвижности животных половое размножение стало преобладать. Оно обеспечивает сочетание в потомстве признаков обоих родителей, т.е. исключает образование клонов.

Партеногенез.

Клонирование в природе наблюдается в случае т.н. партеногенеза, когда потомство развивается из неоплодотворенной женской гаметы (яйцеклетки). Этот процесс широко распространен среди насекомых. Поскольку родительская особь всего одна, она генетически идентична потомкам и составляет с ними клон. У млекопитающих партеногенез можно искусственно стимулировать, но эмбрион погибает на ранних стадиях своего развития.
См. также ЯЙЦО; РАЗМНОЖЕНИЕ.

Размножение растений и получение рассады.

У растений известны различные формы бесполого размножения, обычно называемого вегетативным. Самостоятельный организм может развиться у них из частей листьев, стеблей и корней. Если эти части получены от одного растения, то образуется клон. Для вегетативного размножения у многих видов используются специальные структуры, к которым относятся, например, подземные корневища у золотой розги, надземные столоны («усы») у земляники, луковицы у чеснока, клубни у картофеля и клубнелуковицы у гладиолусов. Таким способом размножают не только травянистые, но и многие древесно-кустарниковые виды. К относительно новым методам коммерческого клонирования некоторых растений относится выращивание их из культуры ткани.

Среди сельскохозяйственных культур вегетативно размножают, например, бананы, ананасы, виноград и землянику. Особый способ клонирования, называемый прививкой, применяют в случае плодовых деревьев, в частности пекана, яблони и персика. Черенки, вырезанные из ветвей ценного в хозяйственном отношении экземпляра (привои), приращивают к укорененным растениям (подвоям) того же вида, а иногда и другого – близкого таксономически. Привой нормально растет и приносит плоды, не уступающие по качеству тем, что развиваются на материнском дереве.

Лабораторное клонирование антител.

Все позвоночные для защиты от инфекций вырабатывают особые белки – антитела. Разработаны методы их клонирования, позволяющие получать большие количества идентичных молекул. Произведенные таким образом антитела называются моноклональными. Эти высокоспецифичные вещества используются для определения концентрации ряда белков в жидкостях тела, например белковых гормонов, или для выявления раковых клеток (и возможного воздействия на них), что очень важно в научных исследованиях, а кроме того, является относительно недорогим методом диагностики некоторых заболеваний.

Клонирование генов.

Становится известно все больше специфических генов, связанных с развитием определенных болезней. Эти гены научились выделять из организма и присоединять к ним соответствующие промоторы, т.е. участки ДНК, управляющие их работой. Получаемые генные комплексы можно клонировать несколькими способами. Один из них – полимеразная цепная реакция (ПЦР), т.е. размножение нужного участка ДНК с помощью фермента полимеразы, что позволяет удваивать количество генных копий каждые несколько минут (см. также ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ). Клонированные таким образом гены можно затем ввести в организм животного (получив т.н. трансгенную особь), которое в результате приобретет способность синтезировать нужное вещество, например ценный фармацевтический продукт. Трансгенные животные служат также моделями для изучения ряда тяжелых болезней человека, в частности муковисцидоза.

Клонирование млекопитающих.

Выше уже приводились примеры разных типов клонирования в природе. Если любому зверю порезать кожу, клоны новых клеток быстро приходят на смену поврежденным. Однако клонирование целых высокоорганизованных организмов – процесс гораздо более сложный, чем заживление раны.

Зачем вообще клонировать животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии. Проектируется производить трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.

Первые опыты.

Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Все успешные эксперименты такого рода начинались с клеток эмбриона, изолируемых на ранних стадиях развития до начала их дифференцировки в т.н. зародышевые листки, дающие начало специализированным тканям и органам. Эти клетки (бластомеры) разделяют, пока их число в зародыше не превысило 32 или 64, и с помощью особых микрохирургических методов помещают по одной в ооциты (неоплодотворенные яйцеклетки), из которых предварительно удаляют ядро. У всех бластомеров одного эмбриона одинаковый набор генов, а ооциты служат для них как бы инкубатором. После соответствующей электрической и/или химической стимуляции и культивирования из этих клеток можно получить идентичные зародыши и перенести их (имплантировать) в матку готовых к зачатию самок того же вида. В конечном итоге такие «приемные матери» родят почти идентичных детенышей, однако вся процедура в целом остается с практической точки зрения крайне неэффективной. Вместо вынашивания всех эмбрионов из первого клона практикуют также их разделение на бластомеры и повторный цикл клонирования, получая в итоге гораздо большее количество пригодных для имплантации зародышей.

Клонирование взрослых млекопитающих.

По мере роста и развития животного соответствующие его гены «включаются» и «выключаются» в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшее нарушение здесь чревато болезнью, а то и гибелью всей особи. Следовательно, если вырезать кусочек, скажем, уже сформировавшегося подбородка, нос из него не разовьется. Правда, клетки могут терять специализацию (дедифференцироваться), что наблюдается при возникновении раковых опухолей. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую теоретически, но крайне сложную задачу, которую многие специалисты считали неразрешимой.

В 1997 шотландский эмбриолог Ян Уилмат со своими сотрудниками сообщил об успешном клонировании ягненка из дифференцированной клетки молочной железы шестилетней овцы. Культивируя клетки этого типа на т.н. минимальной (содержащей лишь минимум необходимых для поддержания жизни веществ) питательной среде, не позволявшей им выполнять свои «взрослые» функции, удалось добиться их дедифференцировки до эмбрионального состояния. Затем такую клетку слили с энуклеированной (лишенной ядра) яйцеклеткой другой овцы и имплантировали начавший развитие эмбрион в матку третьей самки. В результате исходная клетка молочной железы повторила и самостоятельно отрегулировала все этапы, которые в норме проходит оплодотворенное яйцо, превращаясь во многие миллиарды специализированных клеток взрослого млекопитающего. Через некоторое время эти исследователи сообщили о клонировании овцы с введенным в нее человеческим геном, а специалисты из США заявили о создании клонов взрослых коров.

Важно подчеркнуть, что особи получаемых описанным способом клонов не достигают того уровня идентичности друг другу, который свойствен однояйцовым близнецам. Во-первых, развитие их происходит в разных ооцитах, каждый из которых сохраняет некоторое количество собственной ДНК в митохондриях (органеллах дыхания). Во-вторых, эмбрионы вынашиваются различными «приемными матерями», и, наконец, после рождения каждый детеныш попадает в условия среды, неизбежно являющиеся в той или иной степени уникальными.

Открывающиеся перспективы.

Работы Уилмата и других биологов служат основой для новых исследований, которые могли бы значительно расширить наши представления о функционировании генов в ходе нормального развития, а также при воздействии на них ряда лекарственных веществ и стрессовых факторов. Это позволило бы усовершенствовать медицинское обслуживание путем создания и применения новых недорогих инструментов ранней диагностики и лечения. Если бы таким путем удалось разработать методы генной терапии, т.е. «исправления» аномальных генов, ответственных за опасные для жизни врожденные нарушения, человечество смогло бы избавиться от некоторых наследственных заболеваний, серьезно снижающих трудоспособность и сокращающих жизнь людей.

О ценности клонирования для создания трансгенных и элитных животных уже говорилось. При его широком применении можно было бы накапливать в замороженном виде неограниченные количества эмбрионов и другого материала, сохраняя таким образом ныне существующую «зародышевую плазму» во всем ее разнообразии.

Клонирование растений — современный подход к вегетативному размножению

К одному из направлений биотехнологии относится клонирование растений и животных. Полученные искусственным путем при делении клеток клоны полностью идентичны исходному организму. В отношении растений клонирование – это способ вегетативного размножения, которым давно пользуются садоводы. Получение нового растения из черенков, отростков, усов – не новинка, а проверенный временем способ. По сравнению с семенным размножением это наиболее быстрый и эффективный способ получения саженцев.

Что такое клонирование

Создание организмов с одинаковым генетическим набором – это и есть клонирование. В растительном мире оно не представляет особой сложности, так как клетки продолжают деление в ходе роста и дифференцировки на ткани. Для элементарной единицы всего живого характерно свойство тотипотентности – способность дать начало любой клетке.

В ядре заложена генетическая информация, в которой полностью собраны все данные о конкретном растении. Это дает возможность из небольшого ростка или клетки воспроизвести организм, который является клоном — точной копией исходного растения.

Клонирование в природе происходит на протяжении миллиардов лет. В этом случае растения размножаются бесполым путем (вегетативно). Земляника укореняется с помощью усов. Этот же способ используют лапчатка гусиная и лютик ползучий.

Черника образует новые кустики за счет боковых побегов. Из водных растений прекрасно клонирует себе подобных стрелолист обыкновенный, горизонтальные побеги которого распространяются по дну водоема. На прибрежных отмелях растет водокрас, образующий усы для продолжения рода.

Молодой побег, попадая в благоприятные условия, способен укорениться и дать начало новому растению. Для некоторых представителей фауны это наиболее оптимальный способ размножения, который помогает быстро расселиться, сохранить свой ареал и занять новые местообитания.

Многие виды растений занесены в Красную книгу:о и находятся на грани исчезновения. Восстановить растительный мир способен метод клонирования.

Получать клоны от редких растений и высаживать их в благоприятные природные условия – это один из вариантов увеличения их численности, шанс сохранить некоторые виды.

Плюсы и минусы получения клонов

Садоводы давно занимаются клонированием растений, поскольку этот метод обладает целым рядом преимуществ:

  1. Клон является точной копией материнского растения, поэтому его основные черты и этапы развития предсказуемы.
  2. Гровер обладает полной характеристикой экземпляров, полученных от исходной формы: генетика необходимого вида (сорта) сохраняется полностью.
  3. Одно материнское растение способно за короткий промежуток времени «произвести на свет» множество идентичных ей проростков, что дает возможность последующих массовых посадок.
  4. Клонировать сорт удобнее зимой, а весной высаживать в грунт жизнеспособные экземпляры, которые быстро набирают зеленую массу, становятся взрослым растением.
  5. Отбираются экземпляры с высокими качественными характеристиками, которые впоследствии приносят отменный урожай, обладают высокой декоративностью или другими, не менее ценными качествами.

Из недостатков следует отметить:

  1. Сохранение генетической информации. В природе происходят перестройки в хромосомном наборе, что в ряде случаев полезно растению. Оно приобретает выносливость, устойчивость к некоторым болезням, способность жить в изменившихся климатических условиях и другие черты. При клонировании генетические перестройки встречаются редко.
  2. Выращенные в лабораторной практически стерильной среде, клоны плохо адаптируются в природе. Поселяясь «под открытым небом», они не способны заботиться о себе. Искусственно созданные экземпляры часто болеют: их атакуют вредители, болезни, они плохо переносят климатические изменения.

Для клонирования используются клетки апикальной меристемы (верхушки побегов или кончики корешков), которые способны к быстрому делению.

Сбалансированная по всем компонентам питательная среда поможет создать полноценное питание для растений. При нарушении гормонального баланса прекращается дифференциация клеток и происходит рост бесформенной клеточной массы или каллуса.

Поэтапное клонирование растений

При клонировании растений в домашних условиях используют необходимое количество черенков выбранных сортов. Используют здоровое и продуктивное растение, чтобы получить высокую урожайность или декоративность сорта. Выращивают в зимний период для последующего высаживания в грунт саженцев с заданными качествами.

1 этап

На начальном этапе клонирования действуем следующим образом:

  • используем здоровые черенки без признаков заболеваний;
  • молодой стебель длиной 10-20 см срезаем острым, чистым ножом;
  • срез проводим под углом в 45 градусов;
  • расположение стебля – место ответвления черенка от побега;
  • нижние листья убираем, чтобы усилить рост корневой системы;
  • накануне высадки срез обновляем;
  • саженцы ставим в воду со сбалансированным рН=5,8-6,2.

Корни в обычной воде прорастают медленно: потребуется 1-2 недели, чтобы увидеть начало образования молодых корешков. Ускорить процесс помогут стимуляторы корнеобразования, а для этого черенки помещают в питательный раствор.

Рассмотрим, как происходит клонирование с применением регуляторов корнеобразования. Биохимиками создано значительное количество различных стимуляторов. Как пример: препарат растительного происхождения Bio Roots, который усиливает рост и укрепляет корни, что помогает растению быстрее сформироваться.

Другой вариант стимулятора – это гель. Подходит гель гель Bioclone B.A.C., а также варианты отечественных производителей — Hesi ClonFix и Maxiclon. В них на несколько часов опускают место среза, чтобы гель попал во внутреннюю часть стебля. Затем черенок переносят в субстрат, которым служит кокосовое волокно или минеральная вата. Это стерильная среда, в которой идет процесс корнеобразования. Она способна удерживать влагу, питая корни.

Обратите особое внимание на выбор корнеобразующего средства. В его состав входят витамины, гормоны, другие важные для роста компоненты.

От выбора зависит дальнейший рост растения или его гибель. Обратитесь к специалисту, который подскажет наиболее оптимальный вариант для конкретной растительной культуры.

2 этап

Укоренившиеся черенки помещают в гидропонную систему. Один из вариантов – аэропонная система-пропагатор X-Stream 40. Гидропонная система любого типа не относится к «дешевым удовольствиям», но ее правильное использование окупается довольно быстро. Гровер будет получать значительное количество высококлассных саженцев для продажи или своих потребностей.

Клоны размещают в камере увлажнения со специальными выемками. Корневая система постоянно орошается питательным раствором. Температура и влажность устанавливается разово, а затем ее нужно просто контролировать.

Когда корни сформированы, важно создать оптимальный баланс питательных веществ, чтобы черенок превратился в крепкое, молодое растение. Достаточное количество тепла и света довершат процесс.

При клонировании растений создаются следующие условия:

  1. Освещение на протяжении суток. Подойдут энергосберегающие или флюоресцентные лампы, обладающие широким спектральным диапазоном. Чтобы контролировать время освещения применяют таймеры для ламп.
  2. Уровень увлажненности – в пределах 80%.
  3. Средний температурный диапазон составляет +22-+25 °С, но он может меняться, исходя из конкретного вида растения. Тепловой режим необходимо постоянно контролировать.

Даже при правильном уходе надеятся на 100% результат бессмысленно, поэтому изначально нужно использовать значительное количество растительного материала.

Полезно установить рядом с клонами панели белого цвета. Процесс клонирования ускоряется, так как белая поверхность отражает широкий спектр цвета, необходимого для фотосинтеза и укоренения.

Клонированные деревья

Получение «лесов в пробирках» — важная задача, которая не отностися к разряду легких. Чтобы сохранить лесной генофонд и приумножить его, биотехнологи создают лаборатории по выращиваю деревьев-клонов.

Например, в Институте Леса НАН, в лаборатории генетики и биотехнологии выращивают клоновые леса и рощи. Их цель – изучить необходимые условия, чтобы ускорить процесс восстановления лесов, ведь для получение дерева и травянистого растения требуется разный временной промежуток.

Примеры клонирования – на лабораторных полках. В пробирках, in vitro, находятся разного возраста хвойные и широколиственные лесные саженцы.

Элитный побег разделяют на множество частей и выращивается на питательной среде в оптимальных условиях:

  • влажность – 50%;
  • температура – 23 °С;
  • интенсивность освещения – 5000 люкс.

Сформированные саженцы попадают на плантации, где происходит их акклиматизация. Такие работы проводятся в промышленных масштабах. В специально оборудованных, огромных боксах массово выращивают саженцы лиственных и древесных пород, которые дают начало большому количеству древесных пород.

Просчитан экономический эффект при клонировании лесов. Это не только лесные массивы, дающие кислород. Осины и березы используют в качестве топлива, а ясень, дуб и липа пригодятся в мебельной и строительной отрасли.

Клонирование дает шанс на укоренение и получение саженцев редких, экзотических растений. Это возможность сохранение растительного генофонда планеты. Использование в частных хозяйствах дает возможность использовать новые, продуктивные сорта, которые сложно или долго размножаются другими способами. Решив использовать метод клонирования, необходимо взвесить все плюсы и минусы процесса, досконально изучить его и только затем приступать к делу.

Micro — клонирование растений — видео

Клонирование животных – За и против

от Joinfor.ru 24.04.2018, 23:46 81 Голоса

✔ Что такое клонирование животных?


Клонирование животных
– это процесс, посредством которого весь организм воспроизводится из одной генетически идентичной клетки, взятой из родительского организма. Это означает, что клонированное животное является точным дубликатом во всех отношениях его родителя; он имеет точно такую же ДНК.

Бесполое размножение некоторых организмов и развитие близнецов из одной оплодотворенной яйцеклетки являются примерами клонирования в природе.

✔ Развитие клонирования в лаборатории

Ученые очень долго пытались клонировать животных, но многие из ранних попыток ни к чему не привели. Первые довольно успешные результаты были замечены, когда головастиков клонировали из эмбриональных клеток лягушки, с помощью процесса ядерного переноса. Созданные таким образом головастики не доживали до стадии зрелых лягушек, но тем не менее это был крупный научный прорыв.

После этого, используя процесс переноса ядер на эмбриональные клетки, ученым удалось произвести клоны млекопитающих. Первым успешным экземпляром клонирования животных стала знаменитая овечка Долли, которая не только выжила, но и смогла воспроизводить потомство естественным способом. Долли была создана Ианом Уилмутом и его командой в Институте Рослина в Эдинбурге, Шотландия, в 1997 году. В отличие от предыдущих опытов, она не была создана из развивающейся эмбриональной клетки, а из развитой клетки молочной железы, взятой у взрослой овцы.

С тех пор ученые добились успеха в создании множества других видов, таких как крысы, кошки, лошади, быки, свиньи и олени.

✔ Процесс клонирования животных

Первоначальные попытки искусственно вызванного клонирования животных проводились с использованием развивающихся эмбриональных клеток. Ядро ДНК было экстрагировано из эмбриональной клетки и имплантировано в неоплодотворенное яйцо, из которого уже было удалено существующее ядро. Затем клетки, которые развивались из этого искусственно индуцированного объединения имплантировали в организм суррогатных матерей. Полученное клонированное животное имело генетический состав идентичный генетическому составу исходной клетки.

Сегодня клонирование животных может быть сделано как для репродуктивных, так и для не репродуктивных целей. Во втором случае клонирование выполняется для получения стволовых клеток или других таких клеток, которые могут использоваться в терапевтических целях, например, для заживления или восстановления поврежденных органов, не дублируя весь организм.

✔ Этика клонирования животных

Большинство ученых рассматривают процесс клонирования животных как серьезный прорыв и видят в нем много полезных возможностей, но некоторые считают его “противником природы”.

Истина заключается в том, что большая часть широкой общественности не осведомлена о конкретных деталях, связанных с клонированием, и в результате чего возникает множество заблуждений.

В современном мире издано множество законов, запрещающих или регулирующих клонирование по всему миру. В некоторых странах клонирование разрешено, если речь не идёт о клонировании человека. Некоторые адвокатские группы стремятся запретить терапевтическое клонирование, даже если это потенциально может спасти людей от многих изнурительных болезней.

– Против клонирования животных

В большом проценте случаев процесс клонирования терпит неудачу во время беременности или возникают какие-то врожденные дефекты, например, теленок, родившийся с двумя головами. Иногда дефекты проявляются позже и убивают клон.

+ За клонирования животных

С другой стороны – при клонировании взрослого животного – вы точно знаете, как будет выглядеть будущий клон. Данная процедура особенно полезна, когда все намерения клонирования заключается в том, чтобы спасти определенный исчезающий вид от полного вымирания.

То, что это возможно, было показано клонированием индийского Гаура в 2001 году. Клонированный Гаур, Ной, умер от осложнений, не связанных с процедурой клонирования.

Читайте также:  Туйка растение
Ссылка на основную публикацию