Из чего делают таблетки

Из чего делают лекарства?

Лекарства, лекарственные средства, медицинские препараты, медпрепараты, медикаменты… Все это названия одной группы продукции, без которой сегодня не обходится практически никто на земле. Начиная с самого рождения, как только человек приходит в этот мир, и на протяжении всей жизни его время от времени (кого-то чаще, кого-то реже) постигают различные негативные факторы, провоцирующие те или иные недуги. Микробы, вирусы, бактерии и т.д., и т.п. не дают спокойно жить до того момента, пока на помощь не приходят правильные лекарства. Что же это такое, из какого сырья производится и как соприкасается с химией, давайте разбираться.

Лекарствами именуется целый список материалов и их совокупностей натуральной или искусственной этимологии, задействуемых в тех или иных лекарственных формах (таблетированной, капсулированной, мазеобразной, в виде раствора и др.) с целью профилактических и диагностических мероприятий, а также для лечения всяческих недугов. Перед тем, как попасть в медпрактику, каждый такой препарат должен пройти клинико-лабораторные исследования и получить разрешение к использованию.

Как все начиналось?

Спасать свои жизни с помощью разного рода природных лекарств люди пытались с давних времен. Преимущественно в этой роли выступали вытяжки из растений. Но нередко для медицинской помощи использовали средства на основе мяса, делали лекарства из дрожжей, субпродуктов и т.д. Благодаря тому, что ряд лекарственных компонентов в составе растений и животных характеризуется легкодоступностью, фармация во все времена успешно применяла лекарства природной этимологии.

В древнем Египте знали о целебных свойствах, к примеру, клещевины и опия. Также столетиями в лечебных целях использовали ландыш, дигиталис, горицвет весенний и многие-многие другие растения. Не обходится без них и современная медицина: не только народная, но и официальная.

Не сразу, но, все же, человечество пришло к важнейшему выводу, а именно, что лечебное воздействие таких источников основывается на избирательном действии на человеческий организм тех или иных присутствующих в их составе хим. соединений. Значимым этапом стало начало получения этих соединений в лабораторных условиях в ходе синтеза.

По мере того, как развивалась техника, проводились научные исследования, стали появляться продукты, которых ранее не было в том виде или в компоновке с другими составляющими. Сотни соединений с терапевтическим эффектом появились на слуху и стали доступны человечеству. Конечно, процесс этот бесконечный. Изучения, исследования, открытия, тестирования и прочее в данном направлении продолжается, время от времени выдавая на свет новые медпрепараты для избавления от всевозможных заболеваний.

Как классифицируют медикаменты?

Классификации лекарственных средств есть разные, зависимо от того, что положено в их основу. Так, по хим. строению они бывают производными фурфураля, глиоксалина, миазина и прочего, по источнику – натуральными, химическими и минеральными. Одно из наиболее употребительных разделений – по фармакологии, иными словами, по тому, как медпрепарат влияет на человека. Кроме того, есть классификации медикаментов по нозологии (по хворям, на которые направлен тот или иной продукт) и комплексная анатомо-терапевтическо-химическая (разделение с учетом фармакологии, хим. природы и нозологических аспектов болезни).

Сырье для фармацевтической промышленности

На сегодняшний день сырьевая база для создания медикаментов – очень широкая и разноплановая. Все источники можно разделить на несколько групп:

– материалы растительного происхождения (различные части растений: зеленая и цветочная масса, плоды, семенной материал, корневая система, кора) и продукты их переработки (масла, соки, смолы);

– животные продукты (жиры, железы, печень трески…);

– органические ископаемые (нефть, нефтепродукты и др.);

– ископаемые неорганической этимологии (всяческие минералы, плюс продукция химпрома и металлургической отрасли, получаемая в ходе их обработки);

– различные орган. соединения (материалы, в необъятном разнообразии выпускаемые хим. предприятиями).

То есть сырье для фармацевтики – это целый комплекс натуральных и синтетических веществ, растительных экстрактов, животных материалов, минералов и т.д., предназначенных для производства медицинских препаратов. Это всевозможные фармацевтические субстанции, от качества которых напрямую зависит эффективность лекарств. Одни используются в качестве действующих компонентов, вторые как вспомогательные вещества, третьи, в зависимости от ситуации, могут выполнять либо ту, либо другую задачу.

Чтобы немного сориентироваться, что к чему, предлагаем рассмотреть некоторые сырьевые материалы для фармацевтической промышленности, которые сегодня используются очень часто, более детально.

Цитрат натрия. Белый кисло-солоноватый порошок, который часто вносят в быстрорастворяющиеся медикаменты. Осуществляет помощь при цистите и ряде прочих инфекций репродуктивной и мочевыделительной систем. Может служить слабительным. Активно задействуется в донорстве, так как не позволяет крови свертываться на протяжении продолжительного периода времени. Также вводится в средства для понижения кислотного уровня (призваны противостоять изжоге и похмельным проявлениям) и, собственно, в различные антикоагулянты, поскольку консервирует не только кровь, но и другие белковые структуры.

Глицерин. Вязкая прозрачная жидкость (источниками могут служить жиры, пропилен, крахмал, древесная мука и др.), которая применяется для растворения лекарственных препаратов, увеличения вязкости жидких сред. Также данный реактив исключает нежелательные изменения жидкостей в ходе их ферментации, не дает мазям, пастам и кремам засыхать. Если заменить глицерином воду, можно создать мед. раствор высокой концентрации.

Лимонная кислота. Кислый белый порошок, сформированный кристаллами. Составляющая большого числа растений (цитрусовых, ягодных, хвойных и др). Действует как антисептик, нейтрализатор, зудоуспокоитель и вяжущий агент. Помогает отбеливать кожу и уменьшает количество кожных выделений. Вводится в различные лекарства с целью укрепления иммунитета, снижения температуры, борьбы с воспалениями в горле и легких. Помогает справляться с гипергидрозом (повышенным потоотделением), очищать организм от избытка солей, токсинов, шлаков, лишних углеводов. Положительно воздействует на ЖКТ, улучшает зрение и противостоит развитию опухолей.

Тальк. Измельченный минерал в виде белого рассыпчатого жирного порошка. Служит вспомогательным фармацевтическим материалом. Для производства лекарств берется только безупречно обработанный продукт, то есть тальк, который хорошо очищен, высушен и простерилизован.

Желатин. Безвкусные и не имеющие запаха пластинки или кристаллы, получаемые из тканей животных и рыб. Фармацией желатин используется для создания оболочек значительного перечня лекарств. Это, в частности, процессы капсулирования и таблетирования.

Метилпарабен (нипагин). Белый порошок из кристаллов с незначительным фенольным запахом. Содержится в чернике, землянике, голубике и синтезируется искусственным путем. Применяется как вспомогательный фармацевтический материал. Это один из самых мощных антисептиков. Проявляет активность к грамположительным и грамотрицательным бактериям.

Пропилпарабен (нипазол). Белый/желтоватый порошок с мощным специфическим запахом. Способ получения – этерификация п-гидроксибензойной кислоты с n-пропанолом. Эффективен против микробов, дрожжей и плесени, особенно в диапазоне рН 4-8.

Кристаллический фиолетовый. Темные зеленые кристаллы с металлическим отблеском. Синтезируются хим. путем. Задействуются в гистологических исследованиях с целью окрашивания бактерий в лабораторных условиях. Обладают противомикробным, вяжущим и антигельминтным действием.

Метиленовый голубой. Аналогично, как и в предыдущем случае, темные зеленые кристаллы, но отблеск немного отличается. Получают это вещество из N,N-диметиланилина. В фармацевтике используют как антисептик и антидот при интоксикациях цианидами, угарным газом и дигидросульфидом. Показывает положительные результаты при терапии болезни Альцгеймера.

Борная кислота. Прозрачная субстанция, без цвета, но со спиртовым запахом. Действующее вещество, выполняющее роль антисептика. Коагулирует белки клеток микробов, повреждает клеточную оболочку.

Уксусная кислота. Бесцветная жидкость с кислым вкусом и резким характерным запахом. С ее участием производят много медпрепаратов, например: фенацетин, аспирин и др.

Сорбиновая кислота. Белая кристаллическая слабокислая масса, не имеющая запаха. Содержится в рябиновом соке и синтезируется хим. путем. Используется в роли консерванта и пластификатора.

Салициловая кислота. Кристаллический порошок или раствор на основе спирта. Продукт, распространенный в естественной среде и добываемый хим. методом. Действующее вещество в ряде медикаментов наружного применения. Выполняет кератолитическое, противогнилостное, местнораздражающее воздействия и противостоит воспалениям. Хорошо размягчает и отслаивает ороговевший эпителий.

Сорбат калия. Белая/бежевая порошкообразная масса или горько-кислые гранулы, не имеющие запаха. Возможна вытяжка продукта из косточек и добыча хим. путем. Это для фармации действующее вещество с большим антибактериальным эффектом.

Бутанол. Бесцветное однородное жидкое вещество, получаемое в промышленности разными способами. Имеет запах сивушного масла. Задействуется при изготовлении многих фармацевтических препаратов. Может служить антисептиком и растворителем.

Этилацетат. Бесцветная летучая жидкость, имеющая приятный фруктовый запах. Популярный в фармакологии растворитель. Может выступать реагентом и реакционной средой при изготовлении фармацевтических средств, в частности метоксазола, гидрокортизона, рифампицина и др.

Химия и фармация

Наука химия и хим. отрасль осуществляют огромное влияние на всевозможные аспекты жизнедеятельности. Это влияние не стало исключением и в плане фармации. Даже вообразить оптимальный прогресс нынешней фармацевтики без сегодняшней химии нереально. А вообще, химию, ни капли не преувеличивая, можно назвать праматерью фармации.

Еще в средневековье алхимиками многократно совершались попытки вмешиваться в медицинские вопросы. Нередко получалось так, что один человек был и химиком, и доктором. Впрочем, алхимическая практика зачастую не несла практической ценности медицинским открытиям, поскольку в основе был не опыт, а предвзятости и ошибочные предположения, которые и приводили в большинстве своем к промахам в деятельности химиков-докторов. Все же случайные успешные результаты и не отбрасывание в сторону народного опыта в некой степени способствовали тогда медикам и фармацевтам, а поддержка их контактов с химиками не приостанавливалась ни под какими предлогами.

Из исторических событий, открытий, процессов, которые принадлежат ученым и до сегодня имеют огромное значение для фармацевтики, стоит отметить хотя бы несколько, чтобы осознать глубину вопроса. Это и создание алхимиками противоядий, и изучение Парацельсом соединений Hg и As, возможности их применения в лечебных целях. Это основоположные находки Ломоносова, Менделеева и немалого числа иных ученых, изобретение микроскопа Левенгуком в XVII столетии. Это также эволюция клеточной теории и науки о бактериях. Все вместе настолько сроднило химию и фармацию, что новые идеи начали не лишь появляться, но и успешно реализоваться в жизни.

Именно химиков стоит благодарить за создание метода дезинфекции. Ведь именно они нашли вещества, которым под силу истреблять микроорганизмы (невидимые глазу в обычных условиях враги организма), провоцирующие нагноения раневых участков, общее заражение крови, появление различных инфекционных хворей и т.д. И эти вещества действовали не избирательно, а осуществляли дезинфицирующее влияние на всех микробов. На основе этого постепенно были также сформированы гигиенические азы – направленность, в которой химия и медицина соединились с огромным проком для людей.

Если говорить о химии современной (беря во внимание достижения ХХ века), о ее влиянии на фармацию, то стоит упомянуть о возможности химиков еще в начале прошлого столетия переделывать молекулы органических соединений, производить непростые молекулы по установленным формулам и прочем подобном. Химиками, а не кем-то другим, были разработаны лекарства-производные фенольной к-ты (ацетилсалициловая к-та, натрий салициловокислый…) и пиразолона (пирамидон, антипирин, метамизол натрия, бутадион).

Витамины. Эти вещества нужны человеку, как воздух или вода. Без них невозможно нормальное функционирование организма. А начальные сведения об их существовании, как вы можете догадаться, принадлежат именно докторам во взаимосвязи с химиками. В 1880 г. доктор Лунин подтвердил и обосновал, что существует некий комплекс веществ, не являющихся стандартной составляющей еды, и вместе с тем очень значимых для нас с вами. Изучения в этом направлении продолжил биохимик Функ, которым в 1912 г. для обозначения данных компонентов было введено понятие «витамины». Спустя каких-то 11 лет, Бессоновым была открыта аскорбиновая кислота – ничто иное как витамин С и эффективный материал для лечения цинги, а также повышения сопротивляемости организма недугам. Сегодня также известно, что этот витамин упрощает транспорт атомов водорода от питательных веществ к кислороду, тем самым способствует улучшению клеточного дыхания.

Читайте также:  Как варить варенье малиновое

Среди иных витаминов, которые стали известны миру, благодаря ученым:

витамин А. Крайне важен для восприятий светового излучения глазной сетчаткой, сохранности клеточных оболочек и защиты организма от простуд, воспалений, кожных недугов;

– В. Группа витаминов, способствующая выработке замысловатых соединений, перемещению обособленных совокупностей атомов между молекулами, формированию гемоглобина и др. Витамин В12, к примеру, нужен для кроветворных процессов и помогает в лечении злокачественной анемии. Витамин В1 (содержит азот и серу), из-за недостатка которого сердце и нервная система работают с нарушениями, содержится в ряде ферментов, ускоряющих биохим. реакции и регулирующих сложное многоэтапное окисление питательных компонентов;

витамин D. Печется об оптимальном состоянии костных тканей;

– Р. Интенсифицирует эффект аскорбиновой к-ты, укрепляет и делает более эластичными стенки вен и артерий;

витамин Е. Благотворно воздействует на мышцы, сдерживает формирование совокупностей, которые несут опасность для клеток в виде свободных радикалов.

Тесная витаминно-ферментная связь говорит о том, что используя витамины, за открытие которых, не в последнюю очередь, стоит сказать спасибо химикам, фармацевты и доктора способствуют восстановлению того хим. баланса, который гармонирует с надлежащим функционированием человеческого организма.

Также благодаря изучению витаминов, химики-биологи смогли постичь механизм, на основе которого воздействуют лекарства. Кроме того, произошло значительное содействие на успехи химиотерапии.

Все упомянутые выше и многие иные вещества осуществляют большой спектр воздействий, ценных не просто для фармацевтики, а для жизни и здоровья нас с вами. Если бы не химия, то удалось ли бы фармации достичь того уровня, который достигнут на данный момент?

Значение химии для фармации

Подытоживая вышесказанное, можно сказать, что химии принадлежит одно из ведущих мест в перечне предусловий успешного развития фармации. Если б не было достижений в таком научном направлении, как химия, дела с созданием лекарств обстояли бы очень скудно. Да что там, наверное, изготовить не получилось бы ни одного медикамента. А связь между этими двумя направлениями деятельности человека имеет очень глубокие корни.

Фармакология с давних времен пользуется собранными лекарственными растениями, минеральными источниками и прочим. С начала ХХ столетия органическая химия и хим. синтез вышли на такую степень развития, что химики смогли переделывать молекулы орган. соединений и не только. В медицине активно задействуются средства разного действия, изучение которых тянется от химии. Необходимые не меньше воздуха человеку продукты, а именно витамины, изучали биохимики, что позволило понять механизм работы лекарственных компонентов и привело к значительным успехам в химиотерапии.

По сегодняшний день химия и фармация идут в ногу друг с другом. И только слаженный тандем двух этих наук может приносить положительные результаты в будущем, помогать создавать новые лекарства, которые будут способны справиться даже с неизлечимыми в наши дни недугами.

Секреты производства: как делают лекарства

Нас окружает множество вещей, привычных для нашего глаза. Многие из них имеют свою историю. Но не менее интересна сама история создания этих вещей.

Сегодняшний наш фоторепортаж посвящен предметам весьма прозаичным, но порой очень нам необходимым, — мы пройдемся по цехам ОАО « Татхимфармпрепараты», где выпускаются более 111 наименований лекарственных средств 30 фармакологических групп.

Специфика фармацевтического производства такова, что на одних и тех же установках для производства различных лекарственных форм ( твердые — таблетки, жидкие — настойки, мягкие — мази) возможно изготовление различных наименований лекарственных средств одной формы по технологической цепочке, которая установлена Промышленным регламентом на производство. После выпуска партии лекарственного средства установки и производственные помещения очищаются, промываются, проверяются на предмет остатков предыдущего продукта и переводятся на другой препарат аналогичной лекарственной формы. Во время моего визита в цеха « Татхимфармпрепараты» шло производство таблеток ацетилсалициловой кислоты и ибупрофена. На участке мягких форм — тетрациклиновой мази, а на участке жидких лекарственных форм — экстракта корня солодки.

Персонал перемещается по коридорам ТХФП в переходной одежде — белых халатах или одноразовой одежде. В тех цехах, где идет непосредственное производство лекарственных препаратов или контакт с ними, установлен особый уровень чистоты. Попадает туда персонал через специальные тамбуры, которые условно разделены на «чистую» и «грязную» зоны. В зоне подготовки к переодеванию персонал снимает переходную одежду и помещает ее в шкаф. Переходят из зоны подготовки к переодеванию ( «грязная зона») в зону для переодевания ( «чистую зону»), пересекая скамью. При пересечении скамьи меняют обувь. В зоне переодевания надевают чистую технологическую одежду из шкафа последовательно, начиная с головы, плотно застегивая и завязывая рукава и штанины. Обработав руки дезинфицирующим раствором, работник может войти в производственное помещение. Технологическая одежда различается по цвету в зависимости от производства: таблеточное производство — голубая, производство мазей — зеленая.

Сырье для производства твердых лекарственных форм ( таблеток) в виде порошков с общезаводского склада поступает на промежуточный склад сырья в цехе, или сырьевой тамбур. С промежуточного склада сырье подается на участок, где распаковывается, при необходимости измельчается, просеивается, взвешивается, перекладывается в специальные емкости для передачи на производственный участок. Исходным сырьем для производства таблеток ацетилсалициловой кислоты является сама кислота и вспомогательные вещества ( крахмал картофельный, медицинский тальк, стеариновая и лимонная кислоты).

По словам Ольги Осяниной, начальника цеха твердых лекарственных форм ОАО «ТХФП», все стадии производственного процесса документируются. Технологические параметры, количество взвешенного сырья и материалов, условия производства, исполнители фиксируются в протоколах производства каждого препарата, что обеспечивает прослеживаемость изготовления каждой серии с момента поступления сырья до выхода готового продукта.

Развешенное сырье поступает в зал, где находится сушилка-гранулятор. В этом аппарате происходит процесс превращения порошкообразных материалов в зерна определенной величины-гранулы. Для этого необходимо увлажнение порошков крахмальным клейстером, смешение и сушка. Процесс грануляции необходим для получения таблеточной массы ( гранулята), из которой потом прессуются таблетки. Для того, чтобы получить качественные таблетки, гранулы должны приобрести определенный размер. Размер гранул для каждого препарата разработан технометрически.

Основное и вспомогательное сырье загружается в продуктовую емкость сушилки с помощью вакуума. Через отверстия в дне продуктовой емкости подается теплый очищенный воздух, сушка влажных материалов происходит в вихревом слое воздуха. Одновременно сырье увлажняется крахмальным клейстером, который подается внутрь насосом через форсунку. Так формируются гранулы. Продукт сушится в течение 1,5 часов.

Сушилка-гранулятор работает в автоматическом режиме, все параметры техпроцесса задаются на пульте управления. Загрузка порошкообразных материалов и выгрузка готового гранулята ведется через пневматическую систему. Готовый гранулят помещается в контейнер, который снабжается этикеткой с наименованием препарата, фамилией гранулировщика, датой изготовления, весом и подается на таблетирование.

Во второй комнате происходит таблетирование. Вот так загружается гранулят.

Таблеточная масса подается в загрузочный бункер, через питатель и ворошитель заполняются матрицы. Процесс таблетирования состоит из стадий дозирования, прессования, выталкивания таблетки из матрицы и сбрасывания ее в таблетприемник.

Прессование заключается в сжатии в матрице гранул при помощи двух пуансонов — верхнего и нижнего. Готовая таблетка выталкивается из матрицы нижним пуансоном. Геометрический размер таблетки определяется размером пресс-инструмента.

Во время технологического процесса машинист-таблетировщик периодически проверяет среднюю массу таблеток, их распадаемость и внешний вид. У таблетки должна быть ровная гладкая поверхность, ровная гладкая фаска, белый, без вкраплений цвет, проверяется наличие риски.

После того как товарная серия будет готова, полуфабрикат отбирается на анализ в химическую лабораторию, где проверяется на соответствие требованиям нормативной документации. После получения положительного заключения из лаборатории, серия отдается на фасовку.

ТХФП выпускает ряд наименований препаратов, покрытых сахарной оболочкой. Готовые таблетки покрываются суспензией в таком вращающемся котле. Суспензия в котел поступает небольшими порциями, поскольку оболочка наносится очень долго, очень тонкими слоями. Одновременно оболочка сушится горячим воздухом.

В отдельном котле, покрытом расплавленным воском, таблеткам придается глянец. Воск греется, котел вращается, и таблетки полируются о восковую поверхность. Когда они по технологическому циклу будут готовы, их помещают в тару, снабжают сопроводительными этикетками и опять отдают на химический анализ, а затем — на фасовку.

Существует несколько видов упаковок для таблеток — контурно-ячейковая из алюминиевой фольги и пленки ПВХ, контурно- безъячейковая из бумаги с полиэтиленовым покрытием, банки из стекла и полимерных материалов. Таблетки подаются по каналам и укладываются в ячейки отформованного материала ( пленка ПВХ) и запечатываются покровным материалом ( алюминиевая фольга), проходя через барабан термосклейки. Температура нагрева барабана термосклейки задается в зависимости от свойств фасуемых таблеток. Но термосклейку можно применить не всегда: не все препараты могут выдержать высокую температуру, не потеряв своих качеств. Для них используется холодносвариваемые материалы.

Методом тиснения наносится информация: номер серии, срок годности препарата. Готовый продукт после укладки в групповую упаковку сдается на химический и микробиологический анализ в отдел контроля качества. ОКК выдает паспорт готового продукта и разрешение на реализацию.

Это участок для расплавления сырья для основы для мази — ланолина и вазелина. В большой ванне плавится вазелин, в маленькой — ланолин.

Готовая основа после 40-минутной стерилизации перекачивается в смесители, где она охлаждается до 28 градусов. После охлаждения в основу загружается расчетное количество основного вещества, и все тщательно перемешивается. Время приготовления глазной мази — 3 часа.

После того как она приготовлена, берутся пробы на анализ. В лаборатории проверяют ее однородность и содержание основного вещества. После получения анализа мазь перекачивается в хранитель, из которого подается на фасовку в тубонабивные машины. На участке работают два тубонабивных автомата — на 10 гр. и на 3 гр. — на них происходит наполнение тубы. Затем производится зажим концевика тубы с нанесением номера серии мази, месяца и года изготовления. Наполненные тубы укладываются в картонные пачки.

При поступлении сырье проходит входной контроль отдела контроля качества. Получив положительный результат анализа, высушенный корень солодки измельчается до требуемых размеров. После измельчения корень подается на экстрагирование. Экстрагирование действующих веществ проводится методом противотока на батарее из 3-х экстракторов. В каждом экстракторе сырье проходит пятикратную экстракцию. Слив извлечения осуществляется со «свежего» растительного сырья.

Для очистки вытяжки корня солодки от балластных веществ производят кипячение в реакторе. Прокипяченную вытяжку фильтруют через друк-фильтр с помощью сжатого воздуха.

Определив объем, вытяжку подают на упаривание. Оно необходимо для того, чтобы удалить лишнюю жидкость из экстракта. Процесс упаривания проводится под вакуумом при температуре не выше 80 градусов. Полученный упаренный густой экстракт выгружают в промежуточные емкости. Контролер отдела контроля качества отбирает пробу экстракта и сдает ее на анализ в лабораторию ОКК. После получения анализа ОКК полупродукт экстракта корня солодки идет на производство « Сиропа солодки» и «Грудного эликсира».

Материалы

Из чего состоит лекарство

Все современные лекарственные препараты многокомпонентны и содержат действующие и вспомогательные вещества. Действующее вещество уменьшает симптомы заболевания или полностью лечит его, являясь основой препарата. Вспомогательные вещества не оказывают лечебного действия на организм, но играют важную роль, определяя вкус, цвет, размер (таблетки), растворимость и многие другие свойства.

Вспомогательные вещества имеют доказанную безопасность, не приносят вреда здоровью и обычно не вызывают побочных действий. Исключение составляют люди, имеющие сверхчувствительность в отношении конкретного вспомогательного вещества (лактоза, ореховое масло, некоторые виды сахаров). Как правило, производители оригинальных лекарств и дженериков (аналогов) используют одни и те же дополнительные компоненты.

Читайте также:  Дрожжи для сидра

Самым простым примером вспомогательного вещества может служить вещество-наполнитель. Оно используется при изготовлении таблеток с очень маленьким содержанием действующего вещества. Наполнитель придает лекарству твердость, поддерживает механическую стабильность, чтобы таблетка не рассыпалась еще в упаковке.

Чтобы препарат быстрее начал действовать, в него добавляют дезинтегранты. Эти вещества обеспечивают быстрый распад твердых лекарственных форм при контакте с водой. Формируются канальца, разрушающие прочные связи между частицами: таблетка набухает и рассыпается, растворяясь в жидкости. Одна из последних разработок — дезинтегранты и связующие вещества на основе микрокристаллической целлюлозы. Новый компонент один выполняет сразу две функции: связывает частицы, помогая сформировать таблетку, и способствует дезинтеграции — распаду после попадания в организм.

Байндеры (связующие вещества)

Назначение байндеров — прочно связать между собой мелкие и нестабильные частицы порошков, гранул или таблеток, чтобы обеспечить достаточную механическую прочность препарата.

Любриканты (обычно стеарат магния) обладают водоотталкивающими свойствами. Их используют на этапе прессовки и формовки таблеток для того, чтобы порошок или гранулы не оставались на заводских формах, не было потерь действующего вещества на производственном этапе.

Форму готовой таблетки поддерживают глиданты, вещества, необходимые для плотного соприкосновения частиц лекарственного вещества. Раньше в этих целях использовался тальк, сегодня — коллоидная форма оксида кремния. Концентрация вспомогательных веществ данного типа обычно не превышает 0,2%.

Сольвенты или растворители

Вода — лучший растворитель для лекарственных препаратов. Она имеет прекрасную физиологическую совместимость с организмом человека, высокую растворяющую способность. Но иногда эти свойства могут привести к нестабильности лекарственного средства, кроме того, вода — благоприятный субстрат для роста бактерий. Такими же свойствами обладают сорбитол и декстроза, которые также используют в качестве растворителей и подсластителей. Этих неприятных свойств лишены ко-сольвенты — пропиленгликоль, глицерол, этиловый спирт. Ко-сольвенты обеспечивают противомикробные свойства, улучшают вкусовые качества, поэтому их добавляют в препараты, предназначенные для рассасывания. Также эти вещества позволяют уменьшить дозу препарата, лучше растворяя лекарство.

Лекарства для детей

К лекарствам, предназначенным для детей, предъявляются особые требования по безопасности и внешним характеристикам. Конечно же, они должны иметь хороший вкус и приятный цвет. Учитывается, что не все дети умеют глотать твердые лекарственные средства, поэтому для многих препаратов необходимо разрабатывать жидкие или иные формы (например, в виде жевательных резинок). Разовая доза должна быть небольшой, а точность дозировки — высокой. К размеру инъекционной иглы и объемам вводимого препарата также предъявляются особые требования. Дети часто боятся одного вида шприца.

Автор: Олег Кучерявенко — врач, руководитель Европейского отделения Международной рабочей группы по доказательной медицине, магистрант (MPH) Лондонской школы гигиены и тропической медицины.

Производственный процессКак делают лекарства

Редакция The Village посетила лабораторию и завод компании Biocad, где создаются лекарства нового поколения

Компанию Biocad основал бывший банкир Дмитрий Морозов в 2001 году. Год назад контрольный пакет в ней приобрёл фонд Millhouse Романа Абрамовича, ещё 20 % за 100 миллионов долларов купил «Фармстандарт». К тому моменту компания входила в тройку крупнейших производителей лекарств в России. Её выручка в прошлом году выросла втрое, до 8,6 миллиарда рублей. Сейчас она занимается разработкой лекарств для лечения онкологических и аутоиммунных заболеваний на основе моноклональных антител. Процесс разработки лекарственного препарата длится около пяти лет, большая часть уходит на клинические испытания. От идеи до реализации лекарства проходит 15 лет.

Всего у компании две производственные площадки, в Подмосковье и особой экономической зоне «Санкт-Петербург». The Village побывал на петербургском заводе и узнал, как там делают лекарства будущего.

Biocad

Месторасположение:
ОЭЗ «Санкт-Петербург»

Число сотрудников в Санкт-Петербурге: более 400

Площадь производственной площадки: 2 000 м 2

Над созданием лекарства работают несколько сотен человек : учёные-биологи, медики, генетики. Разработка биоаналогов занимает пять лет. Биоаналог — это биологический препарат, схожий по параметрам безопасности, качества и эффективности с оригинальным биологическим лекарственным средством в эквивалентной лекарственной форме.

Разработка лекарств начинается с возникновения идеи, которая обсуждается на научно-техническом совете. В формировании и обсуждении идеи участвуют все научные кадры Biocad — это более 300 учёных. Совместными усилиями они выбирают мишень и способ воздействия на неё для лечения или предотвращения заболевания, формируют образ целевой терапевтической молекулы.

Когда прообраз (целевой профиль) лекарства сформирован, начинается процесс разработки реальной молекулы в соответствии с поставленными целями.

В лаборатории молекулярной генетики создают генетические конструкции для получения белков-мишеней человека, которые будут использованы в дальнейших работах. В специально разработанных программах они собирают нуклеотидные последовательности. Затем передают клеточным технологам, которые выставляют получившиеся генетические векторы в клетки млекопитающих для выработки необходимых белков. Получившиеся белки используются для создания библиотек антител.

Библиотека антител представляет собой небольшую пробирку, в которой находятся миллиарды генов различных антител, каждое из которых индивидуально и способно связываться с определённой мишенью.

Для того чтобы библиотека была направленной и доля антител к выбранной мишени в ней была повышена, животным, в основным лабораторным крысам, перед созданием библиотеки вводят препарат целевого белка (иммунизируют) и ждут защитного ответа — так получают иммунные библиотеки.

В отборе библиотек антител участвуют высокопроизводительные роботы. Они помогают разработчикам отобрать из миллиардов молекул тысячи, сотни, десятки и, наконец, найти несколько самых лучших, полностью повторяющих целевой профиль терапевтической молекулы.

После отбора фракции бактериофагов, способных связаться с выбранной мишенью, для дальнейшего отбора используются бактерии, превращённые в мини-биофабрики по производству антител. В клетки бактериальной культуры внедряются гены антител из библиотеки, при этом каждый бактериальный клон начинает вырабатывать индивидуальное антитело.

Исследователи изучают наработанные в отдельных клонах антитела, а после отбора нескольких антител-лидеров начинается усовершенствование полученных молекул. В этом процессе участие принимает математическое моделирование: биоинформатики создают 3D-модели и делают «предсказания» по их дальнейшему усовершенствованию. Предсказания биоинформатиков проверяются с помощью платформы синтеза генов, где создаются новые синтетические библиотеки антител, из которых снова отбираются лучшие кандидаты. Таким образом учёные получают молекулы, обладающие всеми заданными в целевом профиле свойствами.

Далее клеточные технологи учатся нарабатывать выбранные антитела в клетках млекопитающих, создают оптимальные схемы культивирования и подпитки клеток-продуцентов, постепенно масштабируя наработки от небольших лунок в планшетах до 1000-литровых реакторов. Наработанные в больших количествах антитела-лидеры проходят исследования на животных — мелких грызунах, кроликах, морских свинках, нечеловекообразных обезьянах.

Производство

Перед входом на производство, где в больших приборах — биореакторах выращиваются составляющие будущего лекарства, каждый сотрудник должен пройти через воздушный душ, в котором остаются частички пыли.

Набор датчиков и систем отслеживает и регулирует температуру, скорость перемешивания, уровень pH и растворённого кислорода, обеспечивая необходимые условия для роста клеток. Численность и жизнеспособность клеток отслеживают с помощью микроскопа или автоматического счётчика.

После окончания культивирования жидкость очищают до получения целевого продукта — этот процесс занимает 28–29 дней. После очистки субстанцию моноклональных антител отправляют на контроль и розлив во флаконы, которые поступят в больницы и аптеки.

Фотографии: Дима Цыренщиков

Из чего делают таблетки

Наиболее распространены три технологические схемы получения таблеток: с применением влажного или сухого гранулирования и прямое прессование.

Подготовка исходных материалов к таблетированию сводится к их растворению и развешиванию. Взвешивание сырья осуществляется в вытяжных шкафах с аспирацией. После взвешивания сырье поступает на просеивание с помощью просеивателей вибрационного принципа действия.
Смешивание

Составляющие таблеточную смесь лекарственного и вспомогательного вещества необходимо тщательно смешивать для равномерного распределения их в общей массе. Получение однородной по составу таблеточной смеси является очень важной и довольно сложной технологической операцией. В связи с тем, что порошки обладают различными физико-химическими свойствами: дисперсностью, насыпной плотностью, влажностью, текучестью и др. На этой стадии используют смесители периодического действия лопастного типа, форма лопастей может быть различной, но чаще всего червячная или зетобразной.

Это процесс превращения порошкообразного материала в зерна определенной величины, что необходимо для улучшения сыпучести таблетируемой смеси и предотвращения ее расслаивания. Гранулирование может быть «влажным» и «сухим». Влажное гранулирование связано с использованием жидкостей – растворов вспомогательных веществ; при сухом гранулировании к помощи смачивающих жидкостей или не прибегают, или используют их только на одной определенной стадии подготовки материала к таблетированию.

Влажное гранулирование состоит из следующих операций:

1) Измельчение. Эту операцию обычно проводят в шаровых мельницах. Порошок просеивают через сито.

2) Овлажнение. В качестве связывающих веществ рекомендуют применять воду, спирт, сахарный сироп, раствор желатина и 5% крахмальный клейстер. Необходимое количество связывающих веществ устанавливают опытным путем для каждой таблетируемой массы. Для этого, чтобы порошок вообще гранулировался, он должен быть увлажнен до определенной степени. О достаточности увлажнения судят так: небольшое количество массы (0,5 – 1г) сжимают между большим и указательным пальцем; образовавшаяся «лепешка» не должна прилипать к пальцам (чрезмерное увлажнение) и рассыпаться при падении с высоты 15 – 20 см (недостаточное увлажнение). Овлажнение проводят в смесителе с S (сигма) – образными лопастями, которые вращаются с различной скоростью: передняя – со скоростью 17 – 24об/мин, а задняя – 8 – 11об/мин, лопасти могут вращаться в обратную сторону. Для опорожнения смесителя корпус его опрокидывают и массу выталкивают с помощью лопастей.

3) Протирание (собственно гранулирование). Гранулирование производят путем протирания полученной массы через сито 3 – 5мм (№ 20, 40 и 50) Применяют пробивные сита из нержавеющей стали, латуни или бронзы. Не допускается употребление тканных проволочных сит во избежание попадания в таблеточную массу обрывков проволоки. Протирание производят с помощью специальных протирочных машин – грануляторов. В вертикальный перфорированный цилиндр насыпают гранулируемую массу и протирают через отверстия с помощью пружинящих лопастей.

4) Высушивание и обработка гранул. Полученные ранулы рассыпают тонким слоем на поддонах и подсушивают иногда на воздухе при комнатной температуре, но чаще при температуре30 – 40 гр.C в сушильных шкафах или сушильных помещениях. Остаточная влажность в гранулах не должна превышать 2%.

Это мы рассмотрели операции метода влажного гранулирования путем протирания или продавливания. Обычно операции смешивания и равномерного увлажнения порошкообразной смеси различными гранулирующими растворами совмещают и проводят в одном смесители. Иногда в одном аппарате совмещаются операции смешивания и гранулирования (высокоскоростные смесители – грануляторы). Смешивание обеспечивается за счет энергичного принудительного кругового перемешивания частиц и сталкивания их друг с другом. Процесс перемешивания для получения однородной по составу смеси длится 3 – 5′. Затем к предварительно смешиваемому порошку в смеситель подается гранулирующая жидкость, и смесь перемешивается еще 3- 10′. После завершения процесса гранулирования открывают разгрузочный клапан, и при медленном вращении скребка готовый продукт высыпается. Другая конструкция аппарата для совмещения операций смешивания и гранулирования – центробежный смеситель – гранулятор.

По сравнению с сушкой в сушильных шкафах, которые являются малопроизводительными и в которых длительность сушки достигает 20 – 24 часа, более перспективной считается сушка гранул в кипящем (псевдоожиженом) слое. Основными ее преимуществами являются: высокая интенсивность процесса; уменьшение удельных энергетических затрат; возможность полной автоматизации процесса.

Если операции влажного гранулирования выполняются в раздельных аппаратах, то после сушки гранул следует операция сухого гранулирования. После высушивания гранулят не представляет собой равномерной массы и часто содержит комки из слипшихся гранул. Поэтому гранулят повторно поступает в протирочную машину. После этого от гранулята отсеивают образовавшуюся пыль.

Читайте также:  Актинидия аргута и коломикта в чем отличие

Поскольку гранулы, полученные после сухой грануляции, имеют шероховатую поверхность, что затрудняет в дальнейшем их высыпание из загрузочной воронки в процессе таблетирования, а кроме этого, гранулы могут прилипать к матрице и пуансонам таблетпресса, что вызывает, помимо нарушения веса, изъяны в таблетках, прибегают к операции «опудривания» гранулята. Эта операция осуществляется свободным нанесением тонко измельченных веществ на поверхность гранул. Путем опудривания в таблетмассу вводят скользящие и разрыхляющие вещества.

Сухое гранулирование

В некоторых случаях, если лекарственное вещество разлагается в присутствии воды, прибегают к сухому гранулированию. Для этого из порошка прессуют брикеты, которые затем размалывают, получая крупку. После отсеивания от пыли крупку таблетируют. В настоящее время под сухим гранулированием понимают метод, при котором порошкообразный материал подвергают первоначальному уплотнению (прессованию) и получают гранулят, который затем таблетируют – вторичное уплотнение. При первоначальном уплотнении в массу вводят сухие склеивающие вещества (МЦ, КМЦ, ПЭО), обеспечивающих под давлением сцепление частиц как гидрофильных, так и гидрофобных веществ. Доказано пригодность для сухого гранулирования ПЭО в сочетании с крахмалом и тальком. При использовании одного ПЭО масса прилипает к пуансонам.
Прессование

Это процесс образования таблеток из гранулированного или порошкообразного материала под действием давления. В современном фармацевтическом производстве таблетирование осуществляется на специальных прессах – роторных таблеточных машинах (РТМ). Прессование на таблеточных машинах осуществляется пресс – инструментом, состоящим из матрицы и двух пуансонов.

Технологический цикл таблетирования на РТМ складывается из ряда последовательных операций: дозирование материала, прессование (образование таблетки), ее выталкивание и сбрасывание. Все перечисленные операции осуществляются автоматически одна за другой при помощи соответствующих исполнительных механизмов.
Прямое прессование

Это процесс прессования не гранулированных порошков. Прямое прессование позволяет исключить 3 – 4 технологические операции и, таким образом имеет преимущество перед таблетированием с предварительным гранулированием порошков. Однако, несмотря на кажущиеся преимущества, прямое прессование медленно внедряется в производство. Это объясняется тем, что для производительной работы таблеточных машин прессуемый материал должен обладать оптимальными технологическими характеристиками (сыпучестью, пресуемостью, влажностью и др.) Такими характеристиками обладает лишь небольшое число не гранулированных порошков – натрия хлорид, калия йодид, натрия и аммония бромид, гексометилентетрамин, бромкамфара и др. вещества, имеющие изометрическую форм частиц приблизительно одинакового гранулометрического состава, не содержащих большого количества мелких фракций. Они хорошо прессуются.

Одним из методов подготовки лекарственных веществ к прямому прессованию является направленная кристаллизация – добиваются получения таблетируемого вещества в кристаллах заданной сыпучести, прессуемости и влажности путем особых условий кристаллизации. Этим методом получают ацетилсалициловую кислоту и аскорбиновую кислоту.

Широкое использование прямого прессования может быть обеспечено повышением сыпучести не гранулированных порошков, качественным смешиванием сухих лекарственных и вспомогательных веществ, уменьшением склонности веществ к расслоению.

Обеспыливание
Для удаления с поверхности таблеток, выходящих из пресса, пылевых фракций применяются обеспыливатели. Таблетки проходят через вращающийся перфорированный барабан и очищаются от пыли, которая отсасывается пылесосом.

Тритурационными называются таблетки, формируемые из увлажненной массы путем ее втирания в специальную форму с последующей сушкой. В отличие от прессованных, тритурационные таблетки не подвергаются действию давления: сцепление частиц этих таблеток осуществляется только в результате аутогезии при высушивании, поэтому тритурационные таблетки обладают меньшей прочностью, чем прессованные. Тритурационные таблетки изготавливают в тех случаях, когда использование давления нежелательно или невозможно. Это может иметь место тогда, когда дозировка лекарственного вещества мала, а добавление большого количества большого количества вспомогательных веществ нецелесообразно. Изготовить такие таблетки из-за малого размера (d = 1-2 мм) на таблеточной машине технически сложно. Тритурационные таблетки изготавливают и тогда, когда действие добавления может вызвать к – л изменение лекарственного вещества. Например, при получении таблеток нитроглицерина при использовании добавления может произойти взрыв. И еще тритурационные таблетки целесообразно приготавливать в тех случаях, когда необходимы таблетки, быстро и легко растворяющиеся в воде. Для их изготовления не нужны скользящие вещества, которые являются нерастворимыми соединениями. Тритурационные таблетки являются пористыми и непрочными и поэтому они быстро растворяются при контакте с жидкостью, что удобно при производстве таблеток для инъекций и глазных капель.

В качестве вспомогательных веществ для тритурационных таблеток используют лактозу, сахарозу, глюкозу, каолин, СаСО3. При их получении порошкообразную смесь увлажняют 50-70% спиртом до получения пластичной массы, которую затем при помощи шпателя втирают в пластину – матрицу, помещенную на стекло. Затем с помощью поршней пуансонов влажные таблетки выталкиваются из матриц и сушатся на воздухе или в сушильном шкафу при температуре 30-40?C. По другому способу сушка таблеток осуществляется, непосредственно в пластинах и с помощью пуансонов выталкиваются уже высохшие таблетки.

Перспективы развития технологии таблеток

1) Многослойные таблетки позволяют сочетать лекарственные вещества, несовместимые по физико-химическим свойствам, пролонгировать действие лекарственных веществ, регулировать последовательность их всасывания в определенные промежутки времени. Для их производства применяют циклические таблеточные машины. Лекарственные вещества, предназначенные для различных слоев, подаются в питатель машины из отдельного бункера. В матрицу по очереди насыпается новое лекарственное вещество, и нижний пуансон опускается все ниже. Каждое лекарственное вещество имеет свою окраску, и их действие проявляется последовательно, в порядке растворения слоев. Для получения слоистых таблеток различные зарубежные фирмы выпускают специальные модели РТМ, в частности фирма «В.Фетте» (ФРГ).

2) Каркасные таблетки (или таблетки с нерастворимым скелетом) – для их получения используют вспомогательные вещества, образующие сетчатую структуру (матрицу), в которую включено лекарственное вещество. Такая таблетка напоминает губку, поры которой заполнены растворимым лекарственным веществом. Такая таблетка не распадается в желудочно-кишечном тракте. В зависимости от природы матрицы она может набухать и медленно растворяться или сохранять свою геометрическую форму в течение всего пребывания в организме и выводится неизменном в виде пористой массы, в которой поры заполнены жидкостью. Каркасные таблетки относятся к препаратам пролонгированного действия. Лекарственное вещество из них высвобождается путем вымывания. При этом скорость его высвобождения не зависит ни от содержания ферментов в окружающей среде, ни от величины ее рН и остается достаточно постоянной по мере прохождения таблетки через желудочно-кишечный тракт. Скорость высвобождения лекарственного вещества, определяют такие факторы, как природа вспомогательных и растворимость лекарственных веществ, соотношение лекарств и образующего матрицу веществ, пористость таблетки и способ ее получения. Вспомогательные вещества для образования матриц подразделяют на гидрофильные, гидрофобные, инертные и неорганические. Гидрофильные матрицы – из набухающих полимеров (гидроколлоидов): гидроксипропилЦ, гидроксипропилметилЦ, гидроксиэтилметилЦ, метилметакрилата и др. Гидрофобные матрицы – (липидные) – из натуральных восков или из синтетических моно-, ди- и триглицеридов, гидрированных растительных масел, жирных высших спиртов и др. Инертные матрицы – из нерастворимых полимеров: этилЦ, полиэтилен, полиметилметакрилат и др. Для создания каналов в слое полимера, нерастворимого в воде, добавляют водо-растворимые вещества (ПЭГ, ПВП, лактоза, пектин и др.). Вымываясь из каркаса таблетки, они создают условия для постепенного выделения молекул лекарственного вещества. Для получения неорганических матриц используют нетоксичные нерастворимые вещества: Са2НРО4, СаSO4, BaSO4 , аэросил и др. Каркасные таблетки получают прямым прессованием смеси лекарственных и вспомогательных веществ, прессованием микрогранул ли микрокапсул лекарственных веществ.

3) Таблетки с ионитами – продление действия лекарственного вещества возможно путем увеличения молекулы его за счет осаждения, на и – о смоле. Вещества, связанные с и- о смолой, становятся нерастворимыми, и освобождение лекарственного вещества в пищеварительном тракте основано только на обмене ионов. Таблетки с ионитами поддерживают уровень действия лекарственного вещества в течение 12 часов.

Просеивание

Микронизация

Грануляция (Granulation)

Влажное гранулирование (Wet Granulation)

Таблетирование (Compression)

Покрытие таблеток оболочкой (Coating)

ликбез от дилетанта estimata

Новичку об основах в области экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.

воскресенье, 22 сентября 2019 г.

Что такое таблетки

Таблетки – это дозированная лекарственная форма, получаемая прессованием лекарственных или смеси лекарственных и вспомогательных веществ, предназначенная для внутреннего, сублингвального, имплантационного или парентерального применения.

Таблетки являются одной из самых распространенных и перспективных лекарственных форм и, как уже упоминалось ранее, в настоящее время составляют около 80 % от общего объема готовых лекарственных форм.

Достоинства таблеток

  • точность дозирования вводимых в таблетки лекарственных веществ
  • портативность таблеток, обеспечивающая удобство отпуска, хранения и транспортировки лекарственной формы
  • сохранность лекарственных веществ в спрессованном состоянии. Для недостаточно устойчивых веществ возможно нанесение защитных оболочек
  • маскировка неприятных органолептических свойств лекарственных веществ (вкус, запах, красящая способность), которая достигается наложением оболочек из сахара, какао, шоколада и др.
  • локализация действия лекарственного вещества в определенном месте ЖКТ путем нанесения оболочек, растворимых в кислой или щелочной среде
  • пролонгирование действия лекарственных веществ (путем нанесения покрытий)
  • регулирование последовательного всасывания отдельных лекарственных веществ из таблетки сложного состава в определенные промежутки времени (многослойные таблетки)
  • сочетание лекарственных веществ, несовместимых по физико-химическим свойствам

Недостатки таблеток

  • при хранении таблетки могут терять свою распадаемость и цементироваться или, наоборот, разрушаться
  • с таблетками в организм вводятся вспомогательные вещества, вызывающие иногда побочные явления (например, тальк раздражает слизистые оболочки)
  • отдельные лекарственные препараты образуют в зоне растворения высококонцентрированные растворы, которые могут вызывать сильное раздражение слизистых оболочек. Этот недостаток легко устраним, если такие таблетки перед приемом размельчить и растворить в определенном количестве воды;
  • таблетки невозможно ввести в организм при рвоте или обморочном состоянии
  • не все больные, особенно дети, могут свободно проглатывать таблетки.

Описание таблеток

Виды таблеток

Таблетки делимые

Таблетки диаметром более 9 мм, имеющие одну или две перпендикулярные друг другу риски (насечки), что позволяет разделить таблетку на две или четыре части и таким образом варьировать дозировку лекарственного средства.

Таблетки измельчаемые

Таблетки для приготовления раствора или суспензии, требующие предварительного измельчения.

Таблетки непокрытые

Таблетки покрытые

  • дражированные
  • пленочные (масса покрывающего слоя составляет менее 1/10 от общей массы)
  • прессованные
  • гастросолюбильные (растворимые в желудке)
  • энтеросолюбильные (кишечнорастворимые)

Таблетки кишечнорастворимые (таблетки желудочно-резистентные)

Уровни рН меняются в разных отделах желудочно-кишечного тракта. Особенно большой является разница между уровнями рН в желудке (1,5-2) и тонком кишечнике (5,9-7,9).
Особенно важно это учитывать для того, чтобы оценить эффективность основных действующих веществ (которая может меняться в соответствии с рН), входящих в состав таблеток. Однако, также рН следует учитывают для предотвращения разрушения основных действующих веществ в желудочном соке.
В связи этим получили распространение желудочно-резистентные таблетки, в которых основное действующее вещество защищено от желудочного сока, подвергаясь всасыванию только в тонком кишечнике.Получают путём покрытия таблеток желудочно-резистентной оболочкой (кишечнорастворимые таблетки) или прессованием гранул и частиц, предварительно покрытых желудочно-резистентной оболочкой или прессованием лекарственных веществ в смеси с желудочно-резистентным наполнителем (дурулы).

Таблетки с покрытием пленочным

Покрытия пленочные могут быть растворимыми в воде (из растворов природной целлюлозы, полиэтиленгликолей, желатина и гуммиарабика и др.) и нерастворимыми в воде, или лаками (из некоторых высокомолекулярных соединений)

Таблетки с модифицированным высвобождением

Термин используется для обозначения таблеток с контролируемым высвобождением, таблеток с замедленным высвобождением, таблеток с постепенным высвобождением и др. Термин не используется для наименования таблеток, обозначаемых как таблетки депо, таблетки имплантируемые, таблетки ретард, таблетки рапид ретард.

Таблетки ретард

Таблетки с пролонгированным (периодическим) высвобождением лекарственного вещества из запаса. Обычно представляют собой микрогранулы с лекарственным веществом, окруженные биополимерной матрицей (основой); послойно растворяются основа или микрогранулы, высвобождая очередную порцию лекарственного вещества.

Ссылка на основную публикацию
×
×